
Expert Systems With Applications 226 (2023) 119974

Available online 27 March 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

Predictive temporal patterns discovery

Nofar Sarafian Ben Ari *, Robert Moskovitch
Software and Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel

A R T I C L E I N F O

Keywords:
Temporal data mining
Temporal patterns discovery
Time intervals mining
Classification

A B S T R A C T

In recent years, the use of frequent temporal patterns as features for classification has increasingly been used and
investigated. In this process, commonly frequent patterns are mined from each class separately. Then the patterns
are unified, and feature selection methods may be employed, which are given to induce a classifier. However,
this approach is very time consuming since the mining of each class separately takes time. In this paper, we
introduce the Saraswati suite that can modify a temporal patterns discovery algorithm into a predictive temporal
patterns discovery algorithm, which we demonstrate on Time Intervals Related Patterns. The suite enables
predictive patterns to be favored in runtime, while mining both classes simultaneously to discover these patterns.
This is through the use of a novel stopping criteria that we call the Saraswati selection criteria and strategies suite.
Since the selection criteria are based on the patterns’ metrics, such as their frequency in each class or their
reoccurrence, and more, it is explainable to domain experts, rather than as a score as happens with common
feature selection measures. We modified an existing time intervals related patterns discovery algorithm ac-
cording to the Saraswati suite, and evaluated it rigorously against the current approach on six real-life datasets.
Our results show that the Saraswati-based algorithm is much faster than discovery of the entire set of frequent
patterns, and the selection criteria are more effective than existing state-of-the-art feature selection methods
when the discovered predictive patterns are used for classification. Additionally, the selection of the patterns is
explainable in the domain expert’s terminology based on several meaningful metrics.

1. Introduction

In recent years, numerous research efforts have been made in the
development of frequent temporal patterns discovery algorithms (Harel
and Moskovitch, 2021; Moskovitch et al., 2015; Tseng and Lee, 2009), in
order to enable the discovery of actionable temporal knowledge (Mos-
kovitch, 2022). However, often criticism of data mining in general, and
specifically pattern mining, is toward a process that results in a large
number of frequent patterns from which it is hard to determine those
that are useful. For this task, various interestingness measures (Patel
et al., 2008; Fradkin and Mörchen, 2015; Zhou et al., 2016; Shknevsky
et al., 2017) were proposed, but still this remains a challenge since there
often is a lack of context and purpose, in part because the process is
unsupervised. Additionally, most of the interestingness measures are
based on some information-gain-oriented metric, which sums to a score
which is not typically informative enough for a domain expert. In this
work, we wanted to develop selection criteria that consist of a pattern’s
metrics that are informative and understandable for humans, unlike
measures that consist on some information measure, and whose

selection can be easily explained. So, here our criteria will tell if a
pattern is predictive, based on its properties’ values in the classes and
the difference in the values in the classes. For example, it is more
frequent in one class, or it has higher reoccurrence in one of the classes
(relatively to the other), or its instances average duration is higher in
one class.

Recently, there has been an increase in studies employing these
patterns as features for classification (Cheng et al., 2007; Patel et al.,
2008; Batal et al., 2012; Fradkin and Mörchen, 2015; Moskovitch and
Shahar; 2015b, Itzhak et al., 2000; Dvir et al., 2020; Novitski et al.,
2022) – an approach often called temporal patterns-based classification.
Thus, frequent temporal patterns are discovered from each class sepa-
rately, and then often unified and used as a features set for classification.
Sometimes, feature selection methods are used to favor the most pre-
dictive patterns as features. However, these are typically based on
various information gain metrics that result in a score and are often not
intuitive or understood by domain experts. Moreover, such selection
methods typically are applied after the mining process is completed on
each class’ data, which is often a time-consuming task.

* Corresponding author.
E-mail addresses: nofarsa@post.bgu.ac.il (N. Sarafian Ben Ari), robertmo@bgu.ac.il (R. Moskovitch).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.119974
Received 5 July 2021; Received in revised form 22 March 2023; Accepted 23 March 2023

Isr
ael

-U
S BIR

D Fou
nd

ati
on

mailto:nofarsa@post.bgu.ac.il
mailto:robertmo@bgu.ac.il
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.119974
https://doi.org/10.1016/j.eswa.2023.119974
https://doi.org/10.1016/j.eswa.2023.119974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.119974&domain=pdf

Expert Systems With Applications 226 (2023) 119974

2

In this paper, we propose a novel classification-driven selection
criteria for the discovery of predictive frequent temporal patterns, which
is applied during the mining process, and intends to decrease the run-
time. First, we were interested in selecting temporal patterns based on
the differences in the appearance of the patterns in the classes, based on
several metrics, for example, based on their frequency in each class, or
other metrics, such as the average number of their instances within an
entity or the average duration of the instances in the entities. The pat-
terns that appear most differently in the classes will be favored. More-
over, applying this process simultaneously on each class separately in
parallel has the potential to decrease the runtime meaningfully, which is
part of the investigation and contribution of this work. Being able to
discover predictive temporal patterns efficiently has a meaningful po-
tential impact in various domains in which longitudinal data is avail-
able. We describe here this motivation in more detail.

1.1. The predictive temporal patterns discovery challenge

In Fig. 1, we describe how temporal patterns-based classification is
currently performed, in which frequent patterns are discovered from
each class separately, followed by a merge of the patterns that were
discovered from each class. They are then detected in both classes (to
verify that the patterns that were discovered in one class, its instances
are detected also in the other class, even if it was not frequent there), as
described in the top flow of Fig. 1. Additionally, in this paper, we pro-
pose the new Saraswati suite in which predictive patterns are discovered
while mining both classes simultaneously. The BaseLine is illustrated at
the top of Fig. 1, in which the temporal patterns discovery algorithm
(TPDA) is applied on each class separately. The discovered patterns from
each class (some patterns may be discovered in both classes, and some
only in one) are unified. Then feature selection can be further applied
(Patel et al., 2008; Fradkin and Mörchen, 2015; Moskovitch and Shahar,
2015b), and finally, a features matrix, in which the entities are repre-
sented by the patterns as features, is ready for a classification inducer.
Although his current process, which we refer to as BaseLine is compre-
hensive since all the frequent patterns of each class are discovered, it is
also very time consuming.

The process at the bottom of Fig. 1 presents our introduced
Saraswati-based process, in which the temporal patterns discovery al-
gorithm (Saraswati-TPDA), after being extended by the Saraswati suite,
is applied on the data of both classes simultaneously. Then, in runtime, it
discovers the most predictive patterns, and through that expands only
part of the patterns in the enumeration tree (of both classes). In a more
formal fashion, we define the predictive patterns discovery task in the
Methods section in Definition 6.

Thus, in this paper, we present a novel predictive pattern discovery
process, which replaces the BaseLine process described in Fig. 1, in

which the mining is performed on Class A, and then on B separately, and
unifying the patterns, followed by detecting them in each class sepa-
rately, and then applying features selection. Our new process in-
corporates all of these stages within a single mining operation, which is
applied on both classes’ training data in parallel. Additionally, novel
selection criteria are introduced within a suite for predictive temporal
patterns, and we show how the process can be applied to transform a
temporal pattern discovery algorithm into a predictive temporal pattern
discovery algorithm that is applied in runtime – instead of the current
BaseLine process. The proposed process is less comprehensive, but seems
to be effective, while having shorter runtimes.

The main contributions of this paper are the following:

1. The Saraswati suite that enables a temporal pattern discovery algo-
rithm to be transformed into a predictive temporal pattern discovery
algorithm, including selection criteria, or more specifically:
a. Instead of mining class A, and then mining class B, and then

unifying the discovered patterns, and detecting their unification
in both classes, followed by running a feature selection method, it
enables discovery of the predictive patterns in a single mining run
applied on both classes simultaneously.

b. It enables pattern selection based on the differences in the pat-
tern’s metrics in each of the classes, such as frequency, reoccur-
rences, etc.

c. It includes a novel selection score that consists on the various
pattern’s metrics, which makes its more explainable and
meaningful.

d. It is explainable – the reason a pattern was selected is explained to
a domain expert in a simple way based on meaningful pattern’s
metrics’ different values in the each of the classes (rather than as
an InfoGain-type of score).

2. KarmaLego ClaSsification Driven (KLSD) is a demonstration
applying the Saraswati suite to the KarmaLego algorithm for time
intervals mining, resulting in an efficient mining that is applied on
two classes simultaneously, and selecting the most predictive
patterns.

3. A rigorous evaluation is conducted of six datasets that evaluate the
effectiveness in runtime reduction and the number of predictive
patterns discovered, as well as their use for classification in com-
parison to patterns selected by other state-of-the-art feature selection
methods.

The rest of the paper is organized accordingly: We start with the
background, reviewing relevant topics, and continue with the descrip-
tion of the Saraswati suite in the Methods section. Then, in the Evalu-
ation section, we list our research questions and corresponding
experimental plan. Finally, we present the results of the experiments,

Fig. 1. The top part presents the BaseLine process in which the discovery of the temporal patterns is performed on each class separately, and then feature selection
may be performed on the entire set of discovered patterns. Finally a features matrix is created to induce a classifier.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

3

discuss them, and present our conclusions.

2. Background

Here, we review relevant topics in the scope of temporal data mining
and machine learning, and more specifically, frequent temporal
patterns-based classification. The first part examines some approaches
in the field of pattern-based classification. Since the proposed suite also
includes feature selection criteria, the next part of this section discusses
filtering feature selection methods and their use in classification. Then
we briefly review the fields of temporal abstraction and time intervals
mining, which we used in our study. Although the proposed method-
ology was designed in a generic way so that it can be implemented in
various types of temporal pattern discovery algorithms, in this paper, we
demonstrate it on Time Intervals Related Patterns (TIRPs)-based
classification.

2.1. Patterns-Based classification

The idea of using patterns as features for classification started from
“static” patterns such as itemsets, and then developed to the use of
sequential or time intervals patterns. Frequent pattern mining discovery
has been a focused subject in data mining research, with many ap-
proaches for mining various kinds of patterns including itemsets (Liu
et al., 1998; Han et al., 2000), sequences (Tseng and Lee, 2009; Fradkin
and Mörchen, 2015; Zhou et al., 2016), and time intervals patterns
(Patel et al., 2008; Batal et al., 2012; Moskovitch et al., 2015). Many
association-rule-based classifiers were proposed by using efficient
association-rule mining algorithms such as Apriori (Agrawal et al.,
1994) and FP-growth (Han et al., 2000), among others.

Cheng et al. (2007) proposed a framework of frequent sequence
pattern-based classification, in which the data are partitioned according
to class label, and frequent patterns are discovered in each partition with
minimal support (the percentage of entities). Then feature selection is
applied on the frequent patterns, and a model is built. They also pro-
posed a new feature selection method MMRFS (Maximal Marginal
Relevance Feature Selection) based on relevant and redundant measures
of the patterns in order to choose the optimal set of predictive patterns
from the full set of frequent patterns discovered. Beyond itemset pattern
mining, for sequential data, sequential pattern mining methods were
developed such as Generalized Sequential Patterns (GSP) (Srikant &
Agrawal, 1996), SPADE (Zaki, 2001), PrefixSpan (Pei et al., 2004),
SPAM (Ayres et al., 2002), and more (Tseng and Lee, 2009; Fradkin and
Mörchen, 2015; Zhou et al., 2016).

Lesh et al. (2000) introduced the FeatureMine, a scalable feature-
mining algorithm which uses sequence mining techniques to choose
only the relevant patterns for classification. Experiments on several
datasets demonstrate that FeatureMine improved classification results
by 10–50% and can efficiently reduce the number of produced patterns.
Tseng and Lee (2009) proposed the Classify-By-Sequence (CBS) algo-
rithm for classifying large sequence datasets. The main methodology of
their method is mining classifiable sequential patterns (CSPs) from the
sequences and then assigning a score to the new data object for each
class using a scoring function that combines metrics such as support,
confidence, and pattern length. They suggested a number of alternative
scoring functions and tested their performance. The class label is
assigned by the max score between the classes. According to the ex-
periments, they conclude that CBS is an effective and stable method for
classifying temporal data. Another approach (Fradkin and Mörchen,
2015) is direct sequential pattern mining, known as BIDE-
Discriminative, which uses class information and the Information Gain
measure for direct mining of predictive sequential patterns. Fradkin and
Morchen showed that their algorithm provides an efficient solution for
sequence classification as it generates a small number of predictive
patterns that lead to comparable classification performance. Zhou et al.
(2016) proposed the SCIP (Sequence Classification Based Interesting

Patterns) algorithms to mine two types of interesting patterns (itemset,
sequences) that combine confident classification rules. They convert the
discovered patterns into classification rules and proposed two methods
of classifiers.

In the last decade, more methods for sequences of symbolic time
intervals were published, including the use of patterns for classification,
which is the type of data we demonstrate on the use of Saraswati in this
paper. We elaborate on these methods in Subsection 2.4, since in order
to better understand them, it is better to refer to temporal abstraction
and time intervals mining first, as we do in the following subsections. In
fact, in this paper, we demonstrate the use of Saraswati on multivariate
heterogeneous temporal datasets that went through temporal
abstraction.

2.2. Filtering feature selection

The Saraswati score and the KLSD introduced methods enable the
discovery of predictive patterns in mining runtime, and for that the
paper introduced a new score for TIRPs selection. This score is applied in
the mining runtime, but could be as well applied separately as a feature
selection method for TIRPs features, or even generally when temporal
patterns are used as features for classification. Moreover, in the evalu-
ation we also compare it to the use of standard feature selection
methods, and for that we are reviewing here the field of features se-
lection. Feature selection is a preprocessing step used in classification to
reduce the number of features through favoring a subset of the more
important features that correlate with the class label. Feature selection
has three goals: to improve the classification performance, to provide
faster and more efficient predictors, and to create potentially better
understanding of the data in the context of classification. There are
generally two types of feature selection methods: one is filtering feature
selection, also known as variable ranking, which is a preprocessing step
(Kohavi and John, 1997) independent of the choice of the classifier; and
second, is wrapping feature selection, which is dependent on the classi-
fier since it evaluates subsets of features according to their effectiveness
to a given classifier. Although variable ranking is not optimal, it is often
used for preliminary selection of features prior to the wrapper method
because of its computational and statistical scalability. The method that
we present here functions as a filtering feature selection, which is
applied while the features in the form of temporal patterns are
discovered.

Consider a set of m examples
{
xk,yk

}
(k = 1,⋯m) consisting of n

input variables xk,i(i = 1,⋯.n) and one output variable yk. Variable
ranking makes use of a scoring function S(i) computed from the values
xk,i and yk, k = 1,⋯m. Then sort the scores in descending order of S(i),
according to the significance of the variable relative to the target, and
choose the top k best variables, for example, using Fisher’s criterion to
rank variables in a classification problem where the covariance matrix is
diagonal is optimum for Fisher’s linear discriminant classifier (Peter
et al., 2001). Another popular criterion is the Pearson correlation coef-
ficient R(i) (Benesty et al., 2009). Correlation criteria like R(i) that can
only detect linear dependencies between a variable and target. Corre-
lation criteria are often used for microarray data analysis, as illustrated
by Weston et al. (2003). Many approaches of the variable selection
problem used information from theoretic criteria (Bekkerman et al.,
2003; Dhillon et al., 2003; Torkkola, 2003). In classification, often the
ranking of features is performed after the features are extracted and
placed in a matrix-like form. In this work, the ranking of features occurs
during the feature extraction, along the mining process.

Since we demonstrate the Saraswati suite on a time intervals mining
algorithm, and we abstracted our datasets, we will review temporal
abstraction and time intervals mining. Later, we also examine the Kar-
maLego algorithm, on which we demonstrate the use of the Saraswati
suite.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

4

2.3. Symbolic time intervals

While symbolic time intervals can be raw data, before we review the
development of time intervals mining algorithms, we will first refer to
temporal abstraction (Shahar, 1997; Höppner, 2001), which is a
mechanism that transforms time point series into symbolic time in-
tervals series. In our study evaluation, we used state abstraction, in
which given a set of cutoffs, the values are discretized into states that are
concatenated when adjacent states have the same value into a symbolic
time interval that is defined by its start-time, end-time, and symbol-id. A
more detailed illustration of the temporal abstraction process can be
found elsewhere (Shahar, 1997; Höppner, 2001; Moskovitch and Sha-
har, 2015a).

To determine the cutoffs, in addition to those that are knowledge-
based, in which they are given by a domain expert, there are several
common discretization methods such as Equal-Width Discretization
(EWD), which uniformly divides the ranges of each value and Equal
Frequency Discretization (EFD) that divides the data into states having
the same frequency. More advanced methods include: Symbolic Aggre-
gate approXimation (SAX) (Lin et al., 2007), which focuses on a dis-
cretization of the values based on their Gaussian distribution; Persist
(Mörchen and Ultsch, 2005a; Mörchen and Ultsch, 2005b), which
maximizes the duration of the resulting time intervals, and explicitly
considers the temporal dimension; a relatively recent approach (Mos-
kovitch and Shahar, 2015b) that proposes a supervised Temporal Dis-
cretization for Classification that learns the cutoffs that increase the
differences in the states according to their distribution in the classes,
which is expected to increase classification accuracy; and there are more
(Ramírez-Gallego et al., 2016).

2.4. Time intervals mining

Discovering frequent patterns from symbolic time intervals has
attracted research increasingly in the past years. Symbolic time intervals
can come from various sources, whether raw (i.e., in the medical
domain, conditions, procedures, or drug exposers), or the result of time
point series that went through TA. This representation has several ad-
vantages, such as providing a uniform representation of the heteroge-
neous variables, which is generalized, straightforward and when based
on domain knowledge may be understandable and familiar for domain
experts. Most time intervals mining approaches use some subset of
Allen’s temporal relations (Allen,1983), which are a finite set of 13
temporal relations between a pair of time intervals. The set includes:
before, meets, overlaps, starts, during, finishes, and their corresponding
inverse relations after, met-by, overlapped-by, started-by, contains,
finished-by; and equals. Often when the data is ordered lexicographically,
it is also considered as being composed of seven basic relations, six of
which have an inverse (equals is its own inverse).

Höppner (2001) was the first to define a non-ambiguous represen-
tation of time interval patterns that are based on Allen’s relations, by a
k2 matrix to represent all the pairwise relations within a k-intervals
pattern, which we will refer to as a Time Intervals Related Pattern (TIRP)
(the formal definition of a TIRP is presented in Section 3 in Definition 1).
Another method proposed by Papapetrou et al. (2009) is a hybrid
approach called H-DFS, which combines the first indexing of the pairs of
time intervals according to their temporal relation and then mines the
extended TIRPs in a candidate generation fashion. In addition, they
introduced an epsilon threshold to make the temporal relations more
flexible. Other methods for time intervals were proposed later, but here,
we focus on KarmaLego introduced by (Moskovitch et al., 2015a), which
exploits the transitivity property of the temporal relations for more
efficient candidate generation. We describe this in more detail in the
following section since, in this paper, we demonstrate our approach on
this algorithm.

2.4.1. The KarmaLego algorithm
The KarmaLego algorithm is a fast time intervals mining algorithm

for the discovery of TIRPs by exploiting the transitivity of temporal re-
lations, enabling an efficient candidate generation mechanism (Mosko-
vitch et al., 2015a). KarmaLego consists of two main steps: Karma, in
which the entire set of entities’ time intervals data are scanned and
indexed. Through that, all the symbols are counted, and each pair of
symbolic time intervals and the temporal relation among them are
indexed in an index called DharmaIndex that contains all the frequent 2-
sized TIRPs (k = 2), shown at the second level in Fig. 3. The Dhar-
maIndex will be used later in the Lego phase to retrieve the relevant
pairs through the TIRP extension process. In the second phase, the Lego
algorithm, a recursive process, extends the frequent 2-sized TIRPs.

Based on the candidate symbols (from level 1) and the potential
temporal relations, a set of candidate TIRPs are generated by exploiting
the transitivity of the temporal relations into a tree of longer frequent
TIRPs. KarmaLego discovers the complete set of frequent TIRPs,
including all their multiple occurrences, within the same entity [which
is crucial for the complete discovery of frequent TIRPs (Moskovitch and
Shahar, 2015b)]. The result of this process is a frequent TIRP enumer-
ation tree (Fig. 2). In Fig. 2, an enumeration tree of KarmaLego with
three symbols (A,B,C) for simplicity is shown, and one relation before
(<). At each level, the algorithm adds one symbol to the existing pattern
and temporal relations among the existing symbols in the pattern and
the new symbol to make it non-ambiguous. Each node at each level
represents a pattern which contains symbolic time intervals and the
relation between each pair of symbolic time intervals. As we go down
the tree, the patterns become larger (more symbols), but typically with
lower support.

The complexity of mining time intervals, or TIRPs discovery,
including the discovery of the entire instances, which is required for a
complete discovery (Moskovitch and Shahar, 2015b) is described in
detail in (Moskovitch and Shahar, 2015b). In this paper, the approach is
applied on the KarmaLego algorithm and provides criteria that avoid
discovering the entire enumeration pattern tree and, by that, shortens
the runtime. However, the complexity of the mining algorithm remains
the same, as described in Moskovitch and Shahar (2015b).

2.5. Time intervals Related Patterns-Based classification

In addition to the papers we mentioned earlier, in which sequential
patterns were used as features for classification, here we look at studies
that used TIRPs as features for classification, as we do in our evaluation
in this paper. Patel et al. (2008) were the first to use the discovered
TIRPs for the classification of multivariate temporal data.

They introduced the IEClassifier, a classification method that is
designed specifically to classify data using temporal patterns. Two ver-
sions of the IEClassifier were proposed: Best_Confidence, in which the
class having the highest confidence is selected, whereas in the Major-
ity_Class, the class to which the majority of the patterns discovered
belong is assigned. The two versions of the IEClassifier were compared
with common classifiers, such as C4.5 and SVM, when applied to a non-
temporal representation of the data. The Majority_Class outperformed
the other classification methods. Batal et al. (2012) presented the Recent
Temporal Pattern (RTP) mining framework, which mines frequent
temporal patterns backwards in time, starting from patterns related to
the most recent observations. They compared the classification perfor-
mance of the following constructed features. Last_values – The features
are formed from the most recent values of each variable; TP – The fea-
tures correspond to all frequent temporal patterns; TP_sparse – The
features correspond to the top 50 discriminative temporal patterns that
are selected using a sparse linear model; RTP – The features correspond
to all frequent RTPs; RTP_sparse – The features correspond to the top 50
discriminative RTPs. The results also show that RTP and RTP_sparse
mostly outperform TP and TP_sparse which assess the idea that recent
patterns features are more relevant for classification.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

5

Another approach is a framework for classification of multivariate
temporal data called KarmaLegoSification (KLS), introduced by Mos-
kovitch and Shahar (2015b). Two novel representation metrics for fea-
tures were introduced beyond the binary representation, which are
horizontal support (the number of TIRP occurrences per entity) and
mean duration (the average of the TIRP instances’ time-length per en-
tity) to represent the TIRP features for classification. The results show
that using SAX led to better performance than using EWD for state
abstraction, and using three temporal relations was superior to the use of
Allen’s original seven temporal relations. Additionally, the MeanD
(mean duration) TIRP representation method performed somewhat
better than the HS (horizontal support) representation. A recent study
introduced Maitreya (Moskovitch et al., 2016), a framework that dis-
covers TIRPs only from the cohort of patients having the outcome event.
The results shown that representing the TIRPs using the horizontal
support outperformed the binary and mean duration representations. In
this paper, we propose a suite that enables us to transform a frequent
temporal patterns discovery algorithm into an algorithm that discovers
predictive temporal patterns in runtime by performing the mining
simultaneously on data of each of the classes and applying the Saraswati
novel selection criteria. In this study, we apply the suite to the Karma-
Lego algorithm, while it should be possible to apply it to most temporal
pattern discovery methods, especially those of various types of
sequential patterns. Since we demonstrate our ideas on KarmaLego, we
start with a brief description of the algorithm for the reader’s conve-
nience. A more detailed and comprehensive description can be found
elsewhere (Moskovitch and Shahar, 2015a; Moskovitch et al., 2015).

3. Methods

We describe here, in detail, the Saraswati suite that as mentioned
earlier was designed to transform a temporal pattern discovery algo-
rithm into a predictive temporal pattern discovery algorithm, in place of
current approaches (Subsection 2.5) in which a temporal pattern dis-
covery algorithm is applied separately on each class to discover the most
frequent patterns, unifying the patterns, and detecting each classes’
training data, then applying a feature selection method (as in the papers
mentioned in Subsection 2.5). Here, we propose a temporal pattern
discovery algorithm that performs “feature selection” within the mining
runtime; thus, the algorithm is run on both classes simultaneously.
Unlike the previous methods mentioned in Subsection 2.5, which mine
the entire population using an InfoGain-based criterion, here, we pre-
sent novel selection criteria and strategies that are more understandable
and meaningful for humans, making it not only more useful for
knowledge discovery, but also more effective for classification than
InfoGain-based methods, as our results show.

3.1. The Saraswati suite

As mentioned in Subsection 1.1, currently, the process of performing
temporal pattern- based classification requires the following steps, in
short: mining Class A, mining Class B, unifying the discovered patterns
from each class into a collection of patterns, detecting the unified
collection in each class separately, creating a training matrix, and
applying a feature selection method for reduction. The Saraswati suite
that we introduce here proposes an approach in which the mining al-
gorithm can be extended, so it will enable both classes to be run
simultaneously, and to discover the predictive patterns in a single run, in
runtime.

Thus, the Saraswati suite requires the following general modifica-
tions (along the section, we describe these in detail) to an existing
temporal patterns discovery algorithm:

1. Temporal patterns’ comparison metrics. In order to compare the pat-
terns’ properties in the different classes, metrics are needed. Their
frequency can be used, often called support, which exists typically in
any frequent temporal pattern discovery algorithm. But, to enable
additional comparison criteria, more metrics are required, such as,
for example, the number of (horizontal) instances of the pattern in a
specific entity. In this paper, we propose two metrics that most
temporal patterns discovery algorithms should be able to implement.

2. Mining multiple classes simultaneously. To perform the patterns’ met-
rics comparison during the discovery process, it is necessary to mine
the classes’ data separately in parallel. This often requires separate
data structures and a central process that manages the mining. Here,
we focus on a binary classification problem, meaning two classes
only.

3. Incorporating the Saraswati pattern selection algorithm as a stopping
criterion, instead of the minimal support and at least one of its se-
lection strategies, whether this is metrics or score based.

We start by defining the components on which the method consists
and then we present Saraswati – a new selection criteria and strategies
method, and an algorithm for selecting predictive patterns. Finally, we
demonstrate the use of the Saraswati suite on the KarmaLego algorithm
that we call KLSD (KarmaLego ClaSsification Driven), for mining the
populations of two classes to reveal only the (distinguishing) predictive
patterns between them.

3.1.1. Definitions
Here, we provide the definitions for the components of the proposed

method, which corresponds to the current relevant literature that was
referred in Subsection 2.4.1 and expand it. As mentioned earlier, the
Saraswati suite was designed and described in a generic way, as much as
possible, so that it can be implemented to transform most temporal

Fig. 2. An enumeration tree of KarmaLego with three symbols (A,B,C) and two relations before and overlap (<,o).

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

6

patterns discovery algorithms. In the following definitions, we will refer
to TIRPs specifically, but most of the definitions can be easily translated
to general temporal patterns. We refer to this when it is relevant.

Definition 1.
A non-ambiguous Time Intervals Related Pattern P is defined as P

={I, R}, where I =
{

I1, I2,⋯, Ik} is a set of k symbolic time intervals and

R =
⋂k− 1

i=1

⋂k

j=i+1
r
(
Ii, Ij) = {r1,2

(
I1, I2), .., r1,k

(
I1, Ik),⋯, rk− 1,k

(
Ik− 1, Ik)}

defines the conjunction of all the temporal relations among each of
the k2 − k

2 pairs of symbolic time intervals in I.
Fig. 3 presents an example of a 4-sized TIRP. The half matrix on the

left represents the conjunction of all the pairwise temporal relations
defining it. The last column describes the temporal relations of the
previous STIs A, B, and C relative to the STI D (the entire column of these
temporal relations has a white background since STI D is the last STI).

Definition 2.
Given a database of |E| distinct entities, the vertical support of a TIRP

t is denoted by the cardinality of the set Et of distinct entities within
which t holds at least once, divided by the total number of entities |E|:
ver_sup(t) =|Et|/|E|.

The vertical support is the term usually referred to as support in the
context of association-rules, itemsets, or sequential mining, representing
its frequency in the dataset.

The Saraswati suite requires metrics for the properties of a temporal
pattern in order to measure the differences in the pattern’s appearances
in each of the classes. These can be various and not necessarily those that
we propose here. However, those that we propose here are generic
metrics that can easily be implemented and extracted from any type of
temporal pattern.

Definition 3.
The horizontal support of a pattern t for an entity ei hor_sup (t, ei) is

the number of instances of the pattern t found in ei (illustrated in Fig. 4).
Obviously, this metric can be measured for other types of temporal

patterns, such as sequential patterns or Markov chains, etc., and
implemented easily by making sure that the number of instances of a
pattern in each of the mined entities is counted.

Definition 4.
The vertically normalized horizontal support (VNHS) of a pattern t

for an entity ei is the hor_sup(t, ei) divided by the maximal horizontal
support value of the pattern t across all the entities. In this study, we
used the VNHS as a metric to represent the patterns as features for a
classifier, although it can be used as a metric for the Saraswati selection
criteria, as we explain later.

Definition 5.
The mean duration of the n supporting instances of the same k-sized

pattern t within an entity e is defined by the average of the duration of
all the n instances, where each instance duration is defined from its
earliest time point till its last time point. We here define the Mean
Duration for TIRPs:

MeanDuration(t, e) =
∑n

i=1(Maxk
j=1Ii,j

et − Ii,1
st)

n

where Ii,1
st is the start-time (s) of the first time interval in the i-th instance

(among n instances), and the Max operator selects the time interval
having the latest end-time (et) among the k time intervals of an instance
i. An illustration and a calculation example can be seen in Fig. 4.

We will use these metrics (Definitions 2–5) in our selection of pre-
dictive TIRPs.

3.1.2. Saraswati selection strategies
The new classification-driven TIRP discovery and selection method

intends to ideally discover only predictive patterns, while avoiding the
expansion of the entire enumeration tree of candidate patterns, to find
only those that are potentially predictive. However, using Saraswati as a
stopping criteria naturally results in not revealing all the possible pre-
dictive patterns in that process. We examine this aspect in our experi-
mental plan. The definitions above till definition 6 are absed on previous
papers in the field of time intervals mining, while the following defini-
tions are new and relevant to the method described in this paper.

Definition 6.
The predictive patterns (p-patterns) discovery task:
Given a pair of classes C = {c0, c1}, each represented by an exclusive set

of corresponding entities E = {E0, E1}, the goal is to discover the patterns that,
according to some criteria or score, are meaningfully different in the class
populations. The discriminative score may reflect, for example, the difference
in frequencies (vertical support) values of the classes, or the difference in
other relevant pattern’s metrics (as we propose in this paper) values in the
classes.

For generality, we refer to patterns in general, although in our
demonstration, we use specifically TIRPs. In order to select the predictive
patterns during the mining process, we developed several novel strate-
gies and selection criteria. We have two strategies – one that is metrics
based and the second based on a score threshold:

1. Metrics rule-based strategies – The algorithm checks several or-
dered criteria and based on these selects the predictive patterns and
determines the stopping criteria in the mining process. Here, we have
three different strategies: HS (horizontal support), in which the last
criterion checks if the two populations are significantly different based
on the MHS (Definition 8); MND (mean duration), in which the last
criterion checks if the two populations are significantly different based
on their means, and HS_OR_MND, which checks both previous criterions
with one being enough to satisfy. The names of the strategies represent
the final criterion which selects the pattern in the decision tree. We
explain the full Saraswati feature selection algorithm next.

2. Score based strategy – A score is computed according to a formula
that incorporates various pattern metrics, and if the score is above a
specific threshold, the pattern is selected. Since each pattern receives a
score, it can be used in ranking feature selection for temporal patterns
that are used as features for classification. We compare our score against

Fig. 3. An example of a time intervals-related pattern having four symbolic time intervals and all of their pairwise temporal relations. On the right, the actual four
symbolic time interval TIRP is displayed graphically, while on the left, a half-matrix representation is given presenting the conjunction of the pairwise tempo-
ral relations.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

7

several state-of-the-art filtering feature selection methods.
We define here a set of measures that will enable us to fully explain

the components of our selection strategies for comparison of a pattern
appearance in each of the classes.

Definition 7.
The Delta Vertical Support (ΔVS) is the difference in the vertical

support values of a given pattern t between the two classes A and B, in
which tA.vs is the vertical support of pattern t in class A, and tB.vs is the
vertical support of pattern t in class B. The ΔVS is their absolute sub-
traction: ΔVS= | tA.vs- tB.vs|.

Definition 8.
The Mean Horizontal Support (MHS) of a pattern t describes the

average horizontal support values of its supporting entities (each entity
may have several instances of t, whose count is the horizontal support,
while the MHS refers to the average of HS values of all the supporting
entities). Thus, given a pattern t and a set of |E| supporting entities,

having horizontal support {hs1, hs2….,hse}, MHS(t) =
∑|E|

i=1
hsi

|E| . Note that
the MHS will be always equal to or larger than 1.

Definition 9.
The Delta Mean Horizontal Support (ΔMHS) is the difference be-

tween the MHS of classes A and B for a given pattern t, such that ΔMHS
= | MHS(tA) – MHS(tB)|.

We can also generalize Definitions 8 and 9 for the mean duration
metric, as was described earlier. This can also be done with any other
comparable metric. Thus, given the TIRP metric’s collection of values for
each class, we can calculate its mean, as defined in Definition 8, and the
delta of the classes’ metric mean value, as defined in Definition 9.

To determine whether the difference is meaningful (ΔMHS/ΔMMD),
or even significant, we designed a test based on Welch’s test (Welch,
1947) for unequal samples [since typically (and favorably) vsA is
different than vsB]. Thus, given a pattern appearance in two classes A
and B, having for each class their collection of entities supporting the
pattern, and the horizontal support for each entity HSA = {hs1, hs2, hs3,..,
hsvsA}, and HSB = {hs1, hs2, hs3,.., hsvsB}, in which the number of entities
having the pattern (vsA, vsB) may be different in the classes. We are using
two p-values, phs and pmnd, which are the significance of the statistical
tests, as criterions for determining whether a pattern is predictive.
Similarly, if a new metric is introduced, a corresponding pmetric must be
used.

3.1.2.1. The Saraswati predictability score and algorithm. The Saraswati
predictability score shown in Equation 2 incorporates four components:
the average of the pattern’s vertical support in the two classes, in order
to favor patterns with high vertical support (in both classes, to avoid
sparse features when used for classification). However, since the average
of the vertical support in each of the classes may be the result of a pattern
that appears very frequently in one class, and may be infrequent, or even
absent in the other class, can be for example 50%, while it may be also
with a another pattern that has the same frequency in both classes of

50% for example, we introduced also the delta vertical support. Thus,
the delta vertical support assures favoring patterns in which the differ-
ence in the vertical support between the two classes is larger, and the
statistical p_values of the horizontal support and the mean duration, that
represent also the differences of the values in the classes. Since we want
to incorporate the p-values, for example the phs, in the score-based se-
lection strategy as shown in Equation 2, and its values are often very
small, bellow 0.1, we perform a normalization and bound the values.
When the p-value is below or equal to 0.1, it is multiplied by 10, and if it
is above 0.1, it is set to 0.1.

Thus, to calculate these measures, the following inputs are required:
vsA – the vertical support of a pattern t in class A.
vsB – the vertical support of a pattern t in class B.
Δvs – the unsigned difference between the pattern’s vertical support

of the classes, as defined in Definition 7.
phs– the normalized p_value of the statistical test of the two classes’

mean horizontal support.
pmnd– the normalized p_value of the statistical test of the two classes’

mean duration.
Thus, the score formula is defined as shown in Equation 2, which

consists of the above components.

SaraswatiScore(P) = Avg(
(vsA + vsB

2

)
,Δvs, (1 − phs) , (1 − pmnd)) (2)

The p_values are replaced by their opposite values in order to
represent the power of the statistical tests results. As the p_value is
lower, the statistical test is more significant, and we prefer that all four
components will have higher values to create a high predictability score.
In addition, we gave equal weight to all four components in the formula
since exploring and optimizing their weight will require many experi-
ments not in the scope of this paper. Rather, we evaluate the method
with its default weights.

Algorithm 1 – Saraswati Temporal Pattern Selection Algorithm.
Input:

t – a candidate pattern to be selected (has metrics in A or B) to be selected as predictive
or to be extended in the tree

MINΔVS – the minimum vertical support delta threshold
α– the significance threshold of the statistical test
Strategy – the strategy to use for pattern selection (SCORE/ /HS/MND/ HS_OR_MND)
score_threshold – pattern predictiveness threshold
Output: a Boolean value whether the pattern is predictive or not
1. Δvs= | tA.vs – tB.vs |
2. phs← t_test (, tA.HS, tB.HS)
3. pmnd ← t_test (tA.MND, tB.MND)
4. t. score ← Saraswati_Score (tA.vs, tB.vs ,Δvs, phs, pmnd)
5. If Strategy= ‘score’:
6. If t. score >= score_threshold:
7. return true
8. End If
9. End If
10. Else // Strategy = ‘HS_OR_MND’||’HS’ ||’MND’:

(continued on next page)

Fig. 4. An illustration of the horizontal support and
the mean duration metrics. Two types of TIRPs in a
single entity are shown. The first is a 2-sized TIRP A
overlap B (AoB) which repeats three times, and
therefore, its HS is 3. The second TIRP is an extended
3-sized TIRP defined by AoB ∧ AoC ∧ BcC (B contains
C which occurs two times, and therefore, its HS is 2.
The mean duration of TIRP AoB is calculated based on
the sum of the duration of each of the three instances
divided by 3, accordingly: MND(AoB)= (5 + 8 + 9)
/3 = 7.33.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

8

(continued)

Input:

11. If Δvs >=MINΔVS:
12. return true
13. End If
14. Else
15. If (strategy == ‘HS’ and phs ≤ α) or (strategy == ‘MND’ and pmnd ≤ α):

// strategy = HS_OR_MND, then HS = true and MND = true
16. return true
17. End If
18. End Else
19. End Else
20. return false

The Saraswati algorithm (Algorithm 1) gets a candidate pattern t and its
metrics’ values for each of the two classes based on the chosen strategy,
and then returns a Boolean value indicating if a pattern t is predictive or
not. In addition, it also calculates its predictability score and sets it as a
pattern property. The first input is a candidate pattern which contains its
metrics for two classes.

The second input is the minimum vertical support delta threshold,
which is used as one of the criteria, explained next. The alpha parameter
is used for the statistical test in order to decide if the test is significant or
not. Next is the strategy parameter which can have four different values
as mentioned earlier (SCORE, or one of the metrics based options: HS or
MND or HS_OR_MND) according to the different strategies. The last
parameter is used when the ‘SCORE’ is chosen.

In Algorithm 1, in lines 1–4, we calculate all the components for the
pattern score. If the score strategy was chosen, the algorithm checks if
the pattern’s score is above the score threshold and then selects it as
predictive. Otherwise, the algorithm decides if the pattern is relevant
based on two conditions, while when one is satisfied, the pattern is
selected. The order of the conditions indicates the magnitude of their
meaning in the decision. If the strategy is metrics based using one of the
following: ‘HS_OR_MND’ or ‘HS’ or’MND’, as shown in lines 10–19, then
the following happens: the first condition checks whether the difference
between the vertical support of the pattern in the classes is above a given
threshold MINΔVS, which means it is predictive when large enough. If it
is not, the second condition (line 15) checks whether the difference in
horizontal support values or the mean duration values in the supporting
entities in each class are significantly different. If the t-test has a p-value
that is lower or equal to α, then the classes are considered as different,
and the TIRP is selected as predictive.

3.1.3. Saraswati-Based KarmaLego
Here, we will introduce the new algorithm for classification-driven

TIRP discovery in runtime. The algorithm is demonstrated as a modifi-
cation of the KarmaLego (Moskovitch and Shahar, 2015a) algorithm for
time intervals mining, according to the Saraswati suite, which we call
KLSD (KarmaLego ClaSsification Driven). In KarmaLego, there is a
“main” function that manages the mining process, which is called KL,
and here, it is called KLSD and is described by Algorithm 2. In KLSD,
first, the Karma algorithm is run on each class separately, which indexes
all the entities’ pairs of symbolic time intervals according to their
symbols and temporal relations. This stage results in two indexes for
each class by applying Karma on each class’ data, unlike in KarmaLego
where a single index is created. Running Karma on each class separately
is actually a modification needed in order to implement the Saraswati
suite (Saraswati modification number 2), and it is necessary to mine the
TIRPs from each class population separately. Afterwards, the LegoSD
(the modification of the original Lego algorithm, in which most of the
Saraswati suite is implemented) is run, consisting of the two indexes that
were created by running Karma on each class.

The LegoSD is a recursive method that generates the TIRP candidates
and applies the Saraswati selection method as a stopping criteria (Sar-
aswati modification 1 and 3), as we describe below in detail. KLSD gets

several input values in addition to the Saraswati selection parameters
(Algorithm 1) that were introduced before. If the TIRP is predictive, the
algorithm will stop expanding it depending on the look ahead parameter
(explained below), and if not, it will continue recursively expanding the
tree.

3.1.3.1. Look ahead. In some cases, it may be of interest to discover
longer patterns (containing more components, and appearing deeper in
the enumeration tree), which may be useful for knowledge discovery.
For example, rather than using the patterns as features for classification,
we added the LAhead parameter. It is the maximal number of levels to go
down in the enumeration tree, even after a pattern was found predictive
in an intermediate level. Thus, if we have a two-sized temporal pattern
that was discovered as predictive and the LAhead is four, then the algo-
rithm will not stop expanding the tree at level two, and will expand and
search for predictive patterns up to the fourth level. On the other hand, if
the TIRP is not predictive, the algorithm will not stop the expansion of
the tree until one of the stopping criteria is satisfied. This parameter
intends to increase the ability to discover predictive TIRPs, even if a
TIRP was found predictive. This parameter was also developed in order
to examine our acquired predictive pattern number in comparison to the
BaseLine algorithm, and this will be explained further in the experi-
ments section.

Algorithm 2 - KLSD.
Input:

dbA – A database of |EA| entities of class A
dbB – A database of |EB| entities of class B
MINVS – the minimal vertical support threshold
MINΔVS – the minimum vertical support delta threshold between the classes
LAhead – max number of levels to go down in the tree if the TIRP is predictive
α– the Significance level of the statistical test
Strategy – the strategy to use for TIRP selection
score_threshold – TIRP predictiveness threshold
Output: TAB – an extended TIRP branch of the predictive TIRPs
1. TA

2 ← Karma (dbA, min_ver_sup) // TA
2 is class A’s index of all the 2-sized TIRPs

2. TB
2 ← Karma (dbB , min_ver_sup) // TB

2 is class B’s index of all the 2-sized TIRPs
3. TAB←∅
4. Foreach t ∈ TA

2 ∪ TB
2

5. TAB ← TAB ∪ LegoSD (TA
2, TB

2, MINVS, t, LAhead,2, MINΔVS,α, Strategy,
score_threshold)
6. End Foreach
7. return TAB
8. End

Algorithm 3– LegoSD

Input:

TA
2 – the 2-sized TIRPs index after Karma was ran on class A

TB
2 – the 2-sized TIRPs index after Karma was ran on class B

MINVS – the minimal vertical support threshold
t – a candidate TIRP (has metrics in A or B) to be selected as predictive or to be

extended in the tree
LAhead – max number of levels to go down in the tree if the TIRP is predictive
L – current level in the tree
MINΔVS – the minimum vertical support delta threshold between the classes
α– the Significance level of the statistical test
Strategy – the strategy to use for TIRP selection.
score_threshold – TIRP predictiveness threshold
Output: TAB – an enumerated tree of all predictive TIRPs
1. tA ← TA

2 // the 2-sized TIRPs from class A
2. tB ← TB

2 // the 2-sized TIRPs from class B
3. If max (tA.vs, tB.vs) >= MINVS:
4. isPredictiveTirp ← SarswatiFeatureSelection(t,MINΔVS,α)
5. C ← Generate_Candidate_TIRPs(t) // the candidate generation process
6. Foreach c ∈ C // candidates
7. search supporting instances (c, TA

2, TB
2)

8. If isPredictiveTirp:
9. TAB ← TAB U t // t is predictive
10. If L < LAhead:
11. LegoSD (TA

2, TB
2, c, LAhead, L + 1, ΔVSMIN,α)

12. End If

(continued on next page)

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

9

(continued)

Input:

13. Else:
14. Break
15. End Else
16. End If
17. Else:
18. LegoSD (TA

2, TB
2, c, LAhead, L + 1, ΔVSMIN,α)

19. End Else
20. End Foreach
21. End If
22. Else:
23. Break
24. End Else
25. Return TAB

The LegoSD is a modification of the original Lego algorithm (Moskovitch
and Shahar, 2015a), which is responsible for TIRP extension through
candidate generations, and it corresponds to the Saraswati suite re-
quirements. The main difference between the original Lego and the
LegoSD (Algorithm 3) is the stopping criterion that determines when to
extend the TIRPs and when to stop. In the original Lego, only frequent
TIRPs were discovered based on their vertical support compared to a
minimal vertical support. However, this algorithm searches for the
predictive TIRPs based on the Saraswati selection methods. At the first
line, the algorithm checks if the TIRP is supported above the minimum
vertical support threshold at least in one class (either in class A or B). If it
is, we can continue to examine the TIRP. First, the TIRP itself is checked
whether it is predictive according to the Saraswati criteria (Algorithm
1). Then we generate all possible candidates to expand the TIRP (the
same candidate generation method used for the original KarmaLego),
and for each candidate TIRP, we decide whether or not to keep looking
down the enumeration tree for predictive TIRPs. If a TIRP is predictive,

then the tree expansion is stopped (depending on the max lookahead
number of levels, which we described above). Otherwise, the procedure
continues recursively expanding the enumeration tree by calling
LegoSD. The purpose of stopping the branch tree from extension is to
reduce the running time and prevent the algorithm from extracting
redundant and irrelevant TIRPs for classification purposes. The
complexity of algorithms in time intervals mining, or sequential pattern
mining, complexity can not be analyzed analytically since the input data
can be described in a clear structured way, which is the reason in such
papers methods are compared based on their runtime duration. How-
ever, the worst case complexity can be analyzed, and KLSD’s worst case
analysis is the same as of KarmaLego, and was already described
(Moskovitch and Shahar, 2015b) which is O(SLRL(L-1)/2N2), in which S is
the number of symbols (types of time intervals), L is the maximal length
allowed of a discovered TIRP (which is actually the Look Ahead in our
method), R is the number of temporal relations, and N is the entire
number of symbolic time intervals in the dataset. A detailed analysis of
this formula is at (Moskovitch and Shahar, 2015b).

Fig. 5 illustrates the KLSD tree after selecting only the predictive
TIRPs. In the figure, three enumeration trees of discovered TIRPs con-
sisting on three symbols (A,B,C) and two temporal relations BEFORE (<)
and OVERLAP (o) until level 3 (for simplicity) are shown. The top tree
represents the TIRP tree discovered from class A through a regular KL
process, the second tree is the TIRP tree that is discovered from class B,
and the bottom illustrates the KLSD enumeration tree that will be
discovered from the two classes in parallel after applying the new KLSD
method, choosing only the predictive TIRPs. The minimum support for
this example is 0.5 and, for simplicity, we assume that all the patterns in
the second level have a vertical support greater than 0.5. In this
example, the KLSD algorithm will choose a predictive TIRP if the ΔVS
between the two classes is above a threshold of 0.1. For example, TIRP C
< B is selected because the ΔVS = 2 and then pruned (not expanding to

Fig. 5. KLSD tree after selecting only the predictive TIRPs.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

10

level three). In contrast, TIRP A < B ∧ A < C ∧ BoC is not selected
because the ΔVS = 0.03. Moreover, it will choose the TIRP if it only
exists in one class, for example, AoB ∧ A < C ∧ BoC.

4. Evaluation

To evaluate the KLSD (KarmaLego ClaSsification Driven) Saraswati-
based algorithm and all its new parameters, we designed several ex-
periments. We first present our research questions and then our corre-
sponding experimental plan in detail, including our hypotheses.
Generally, the KLSD output was compared to a process in which TIRPs
are discovered by the KarmaLego algorithm for each class separately
based on the minimal vertical support, like in (Cheng et al., 2007; Batal
et al., 2012; Moskovitch and Shahar, 2015b), which were described in
Fig. 1. The main comparison metrics were the runtime, and the percentage
of the acquired predictive TIRPs.

The KLSD and KarmaLego algorithms were developed in Python 3.6
and run in Microsoft Windows Environment using an Anaconda pack-
age. We used the classification algorithms that were already imple-
mented in different free packages in Python, such as scikit-learn.

5. Research questions

1. What is the Saraswati-based KLSD’s runtime performance and per-
centage of acquired predictive TIRPs in comparison to the BaseLine
approach (Fig. 1), in which TIRPs are fully discovered from each
class separately and then selected?

2. Do TIRP-features selected by Saraswati provide better classification
performance than TIRPs selected using other common filtering
feature selection methods?

3. What are the best Saraswati-based KLSD settings for classification
performance?

4. Do different Saraswati strategies for predictive TIRP selection result
in different classification performance?

5.1. Experimental plan

To answer the research questions, we designed three different ex-
periments that were applied on several datasets. The experiments were
ran on a machine HP Proliant DL560 Gen 8 consisting on Intel Xeon with
32 cores.:

5.1.1. Experiment 1 – Runtime vs. Acquired predictive TIRPs discovery
In this experiment, we wanted to evaluate the runtime of the Sar-

aswati suite applied to KarmaLego, which we call KLSD, in comparison
to the BaseLine.

5.1.1.1. Saraswati versus BaseLine evaluation. Here, we explain the
BaseLine process to which the Saraswati-based modified KaramLego
was compared. As in previous relevant publications, pattern-based
classification was performed (Patel et al., 2008, Moskovitch and Sha-
har, 2015a; Fradkin and Moerchen, 2012) and is described graphically
in Fig. 1. We ran KarmaLego on each class separately with the given
minimum vertical support that allowed us to discover all the frequent
patterns in each of the classes. Thus, we obtained two enumeration trees
that contained all the frequent patterns for each class.

Then, in order to discover the full list of the predictive patterns ac-
cording to the Saraswati criteria, we applied the Saraswati measures on
all of the patterns, whether they appeared in both trees or only in one.
This was the full list of predictive patterns to which we compared the
patterns that were discovered in the Saraswati process to measure the
percentage of acquired TIRPs. The Saraswati process included running
KLSD with both two classes simultaneously in order to discover only the
predictive patterns, given the same minimal vertical support. We set the

same strategy for the Saraswati feature selection as was run in the
BaseLine process (for comparison). Eventually, we compared both pro-
cesses’ output patterns, in which the BaseLine provides the full set of
predictive patterns, and the KLSD was expected to miss some. Thus, we
measured both the runtime, and the percentage of acquired predictive
TIRPs. Both the KLSD and the BaseLine were run with the same
parameter settings, accordingly:

a. TIRP feature selection strategy: metrics-based (HS, MND,
HS_OR_MND) or SCORE

b. Saraswati score thresholds ∈ (0.5,0.6,0.7) when the score strategy
was used

c. Minimum vertical support ∈ (0.4,0.45,0.5,0.55,0.6)
d. LAhead parameter values ∈ (2,3,4,5)

5.1.2. Experiment 2 – KLSD best settings for classification
While discovering predictive TIRPs is useful for knowledge discovery

and for classification, here, we wanted to use the patterns as features for
classification or prediction. In this experiment, we wanted to evaluate
the KLSD method’s parameters including: delta vertical support, alpha,
max levels ahead in the tree, and strategies for their use in classification,
measured by its classification accuracy. In addition to the values eval-
uated in Experiment 1 that included: max levels ahead and strategy, we
evaluated the following values for alpha ∈ (0.1, 0.05, 0.01) and mini-
mum delta vertical support ∈(0.1, 0.2, 0.3). We performed 10-fold cross
validation classification experiments using the following state-of the art
classifiers: logistic regression, random forest, and gradient boosting.
Logistic regression is a statistical model that models the probability of
one event (out of two alternatives) taking place by having the log-odd-
s for the event be a linear combination of one or more independent
variables. Random forest consists on a large number of individual de-
cision trees that operate as an ensemble. Each individual tree in the
random forest spits out a class prediction and the class with the most
votes become model’s prediction. Gradient boosting trees: built in a
stage-wise fashion as in other boosting methods, but it generalizes the
other methods by allowing optimization of an arbitrary differentia-
ble loss function.

The 10-fold cross-validation evaluation process included the
following steps: 1. Discovering predictive TIRPs based on 9-fold data, 2.
Detecting the predictive TIRPs in the last fold, 3. Creating a matrix of
features and a label using the predictive TIRPs as features to induce a
classifier, and 4. Repeating steps 1–3 for each of the 10-fold iterations
with a specific classifier.

We used four TIRP feature representations (the values that are given
to the classifier) in our tests: binary, horizontal support (Definition 3),
normalized horizontal support (Definition 4), and mean duration values
(Definition 5).

5.1.3. Experiment 3 – Feature selection methods comparison
Although we originally designed the Saraswati suite to select pat-

terns whose selection can be easily explained to humans, we also wanted
to compare its effectiveness as a filtering feature selection method, in
comparison to common feature selection methods, when using for
classification. In order to use all the TIRPs, we ran the BaseLine process
and then ranked the TIRPs with their Saraswati score (Definition 10).
For the classification phase, we then chose the n top ranked TIRPs in
each of the feature selection methods. In our experiment, we used
several top n values: 10, 20, 30, and measured the performance based on
the resulting classification accuracy (AUC).

We compared our feature selection to the following selection
methods:

1. Pearson Correlation/BISERIAL Correlation (Benesty et al., 2009), a
statistical measure of the strength of the linear relations between
paired data

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

11

2. Information Gain (Kent,1983), which measures how much “infor-
mation” a feature gives us about the class

5.2. Datasets

We describe here the datasets that we used for our evaluation. Some
of the datasets are publicly available, and others are datasets for
research purposes. All the datasets contain multivariate temporal data
that were transformed into symbolic time intervals using state abstrac-
tion methods, as we mention in each dataset description. We did not
experiment with different abstraction methods or the number of states
since these should not affect the research questions of the study.

Epileptic mice – MEA, also known as Multi Electrode Arrays are
devices for neural signal recording. This dataset consisted of 48 wells
with 16 electrodes from a Columbia University lab that monitors mice
brain cells. Brain cells were taken from laboratory mice with epilepsy
were seeded onto a plate, in which our mission was to classify between
mice who had received treatment and those they had not. The signals
were discretized by the SAX method with three states. The dataset
contained 1038 samples without treatment, and 544 with treatment.

Da Vinci surgical system – The JHU-ISI Gesture and Skill Assess-
ment Working Set (JIGSAW) (Gao et al., 2014) is a surgical activity
dataset for human motion modeling. The data base was recorded while
performing three surgical tasks: suturing (SU), knot-tying (KT), and
needle-passing (NP), performed by eight surgeons (B,C,D,E,F,G,H,I) who
performed each task five times, with three different skills: D,E had more
than 100 h of experience (labeled as Expert), C,F had 10–100 h (labeled
as Intermediate), and B,G,H,I had less than 10 h (labeled as Novice). The
data base consisted of three components: kinematic data, video data,
and manual annotations. We focused on the kinematic data from the Da
Vinci surgical system sampled at 30 Hz. The signals were discretized
using the SAX method with three states.

Diabetes – The Diabetes dataset, provided as part of a collaboration
with Clalit Health Services (Israel’s largest HMO) contained data on
2,004 patients with type II diabetes (Moskovitch and Shahar, 2015b).
The data were collected each month from 2002 to 2007. The dataset
contains six temporal variables (laboratory values or interventions)
recorded over time for each patient: hemoglobin-A1c (HbA1C) values
(indicating the patient’s mean blood-glucose values over the past several
months), blood glucose levels, cholesterol values, several medications
that the patients purchased, oral hypoglycemic agents (diabetic medi-
cations), cholesterol reducing statins, and beta blockers. The class label
for this dataset was patient gender – there were 992 males and 1,012
females. Here, we used EWD for the discretization method with three
states.

Hepatitis – The Hepatitis dataset contained the results of laboratory
tests performed on patients who had hepatitis B or C, and who were
admitted to Chiba University Hospital in Japan. and was a challenge in
ECML/PKDD 2002 (Moskovitch and Shahar, 2015b). Hepatitis A, B, and
C are viral infections that affect the liver of the patient. The dataset
contained time-series data including laboratory tests, which were
collected at Chiba, as well as administrative information, such as the
patient’s demographic data, pathological classification of the disease,
date and result of biopsy, duration of interferon therapy, blood tests, and
urinalysis. Consequently, the temporal data contained the results of 983
types of tests. We selected 11 variables which were found most frequent
(occurring in most of the patients) including: glutamic-oxaloacetic
transminase (GOT), glutamic-pyruvic transminase (GPT), lactate dehy-
drogenase (LDH), TP, alkaline phosphatase (ALP), albumin (ALB), total
bilirubin (T-BIL), direct bilirubin (D-BIL), indirect bilirubin (I-BIL) and
uric acid (UA). The dataset included 204 patients who had hepatitis B
and 294 who had hepatitis C, which were our classes in classification.
We used SAX as a discretization method with three states.

ICU – The ICU dataset contained a multivariate time series of pa-
tients who underwent cardiac surgery at the Academic Medical Center in
Amsterdam, the Netherlands between April 2002 and May 2004

(Moskovitch and Shahar, 2015b). The time intervals were derived from
high-frequency time series, measured every minute over the first 12 h of
the ICU hospitalization. The experimental dataset included 645 patients
of whom 183, or 28%, were mechanically ventilated for more than 24 h.
The main classification goal was to determine whether a patient would
need ventilation after 24 h, given the data of the first 12 h. We used SAX
as a discretization method with three states.

Gesture Phase Segmentation – This database consisted of a tem-
poral segmentation of gestures performed by researchers in order to
preprocess videos for further analysis (Dua and Graff, 2019). The dataset
is composed of seven videos recorded using Microsoft Kinect sensor.
Three different users were asked to read three comic strips and to tell the
stories in front of the sensor. The system delivered: (a) an image of each
frame, identified by a timestamp; (b) a text file containing positions
(coordinates ×, y, z) of six articulation points: left hand, right hand, left
wrist, right wrist, head, and spine, with each line corresponding to a
frame and identified by a timestamp. We chose two classes for our ex-
periments: preparation (1038 instances) stroke (544 instances). We used
SAX as a discretization method with three states.

6. Results

6.1. Experiment 1 – Runtime vs. Acquired predictive TIRP discovery

The goal in this experiment was to evaluate the tradeoff between the
runtime of the Saraswati-based KLSD method and the percentage of the
acquired predictive patterns, in comparison to the BaseLine process
(which discovers the entire set of predictive patterns) with different
settings of KLSD. For each dataset, we present four metrics: (a) minimum
vertical support; (b) max level ahead, which determines until which level
to go down in the tree after a TIRP is found predictive (explained in
Section 3.2); (c) metrics-based strategies (HS, MND, HS_OR_MND); and (d)
score threshold – when we used the score strategy, we evaluated it with
different score thresholds. Note, in the score strategy, a pattern is
selected as predictive if the pattern’s score is above the score threshold
that the algorithm was given.

Figs. 6–11 show the results for each dataset, and Fig. 12 shows the
mean results for all datasets. Figures a–d refer to the specific parameters
mentioned earlier for each experiment, and their values are presented on
the x-axis. Each main figure has two y-axes. The left y-axis refers to
runtime duration, and the right axis refers to the percentage of the ac-
quired predictive TIRPs, represented by the blocks. The blue curve
presents the BaseLine runtime, which was constant, since it is not
affected by the Saraswati parameters, and the red curve presents the
KLSD runtime. The error bars in our graphs present 95% confidence
intervals for each data point. When the error bars are not noticeable, it
means that they are too small.

The results of the experiment show (blue and red curves in graphs)
that our new proposed Saraswati-KLSD method for predictive pattern
discovery was often significantly faster (in some datasets and settings,
even less than half the time) than the runtime of the BaseLine frame-
work. However, in order to be able to discover more predictive TIRPs,
we defined several parameters for the Saraswati-based algorithm, in our
case KLSD, which we wanted to evaluate as well. Therefore, we evalu-
ated various parameters of Saraswati to investigate their influence on
the percentage of the acquired predictive TIRPs and the resulting run-
time. We can conclude that when increasing the max levels ahead
parameter value, more predictive TIRPs were acquired, and that the
reason for this is very straightforward – more predictive patterns may be
discovered by continuing to expand the pattern tree. When increasing
the minimal vertical support threshold, fewer patterns were also
discovered in the BaseLine, and consequentially, the percentage of the
predictive patterns that were acquired also increased. In most datasets,
when the minimal vertical support was higher, we acquired a higher
percentage of predictive patterns. We found that there were no signifi-
cant differences between the metrics-based strategies. In most cases, the

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

12

Saraswati ‘score’ strategy acquired the smallest number of TIRPs, which
can be explained by the score threshold. Choosing predictive patterns by
their score may result in far fewer patterns and, therefore, a smaller
percentage of acquired predictive TIRPs, in comparison to the BaseLine
process.

6.2. Experiment 2 – KLSD best settings for classification

In this experiment, we wanted to learn the best parameters of the
Saraswati-based KLSD method in terms of classification performance,
when the acquired TIRPs were used as features for classification. The
first parameter we wanted to examine was the minimum delta vertical
support threshold between the classes (Definition 7). The next parameter

was the max level ahead, which allows further expansion of the
enumeration tree with longer patterns that are potentially predictive.
Moreover, we tested the different strategies and their impact on the
results.

The last parameter we examined was the alpha, which is used to
determine if a t-test is significant or not as part of our different strategies
in selecting predictive TIRPs. Figs. 13–18 show the results for each
dataset, and Fig. 19 shows the mean results for all the datasets.
Figures a–d refer to the examined parameters mentioned above, whose
values are presented on the x-axis. Each main figure has two y-axes. The
left y-axis refers to runtime duration, and the right axis refers to the
classification performance (AUC) presented in the bars.

According to the above results on the various configurations of the

Fig. 6. In the Hepatitis dataset, in all the charts, the runtime duration of the Sarawati-KLSD was meaningfully lower than the BaseLine runtime. (a) An increase in the
minimal vertical support values resulted in a meaningful increase in the percentage of the acquired predictive TIRPs and a decrease in the KLSD run time. (b) As the
max level ahead increased, the runtime duration of the Saraswati-KLSD increased, and the percentage of the acquired predictive TIRPs increased. (c) No meaningful
difference was found between the strategies, (d) and no meaningful difference was found between the score thresholds. On average, the score strategy acquired a
higher percentage of predictive TIRPs than the metrics-based strategies.

Fig. 7. In the Epileptic mice dataset, the running time of Sarawati-KLSD is meaningfully shorter than the BaseLine runtime. (a) A meaningful increase was observed
in the percentage of the acquired predictive TIRPs and in KLSD running time, as minimum vertical support value was increased. (b) A large increase between max
levels 2 to 3 in the percentage of the predictive TIRPs that were acquired, and an increase in runtime of KLSD as we increased the max level ahead was found. (c) No
meaningful difference was seen between the strategies. (d) At the score threshold = 0.7, only one TIRP was found to be predictive and was not caught.

Fig. 8. In the Diabetes dataset, the runtime of Saraswati-KLSD was meaningfully shorter than the BaseLine. (a) A decrease was seen in the acquired predictive TIRPs
for the minimal vertical support from 0.4 to 0.45, and afterwards an increase, while the KLSD runtime decreased as the minimal vertical support increased. (b) An
increase was found between max levels 2 to 3, and then no difference between the next levels. (c) No significant difference between the strategies was observed. (d) A
small increase in the acquired predictive TIRPs as the score threshold was increased occurred.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

13

Saraswati parameters, we can conclude the following: Changing the
values of the minimum vertical support delta did not have much effect
on the classification performance. In contrast, the max level ahead had a
slight influence on the classification results. Increasing the number of
levels, meaning discovering more patterns, improved the classification
results. Another influencing parameter was the alpha value for the sta-
tistical tests. When we decreased this parameter, we exacerbated the
test; therefore, fewer patterns were discovered as predictive. Then when
we increased the alpha value, the classification performance was higher.
The last parameter we checked was the Saraswati strategy for the pre-
dictive pattern selection.

6.3. Experiment 3 – Feature selection methods comparison

In our last experiment, we wanted to evaluate the new Saraswati
feature selection against state-of-the-art filtering feature selection
methods. We compared them, given several parameter settings. First, (a)
we compared the average performance of the feature selection methods.
In (b), three classifiers were compared. Then in (c), we compared the
performance of the top n features from each of the feature selection
methods. In addition, in (d), we wanted to examine the classification
results while using different TIRP representations. Figs. 20–25 show the
mean results on the various Saraswati parameter values, which are
described in the experiment design for each dataset. Fig. 26 presents the
average results of all the datasets. Figures a–d refer to the examined
settings explained above, whose values are presented on the x-axis. Each

Fig. 9. In the ICU dataset, the runtime of Saraswati-KLSD was meaningfully shorter than the BaseLine. (a) An increase occurred in acquired predictive TIRPs and
KLSD runtime as increasing minimum vertical support. (b) An increase was shown in the acquired predictive TIRPs and in KLSD runtime as the max level ahead
parameter increased. (c) No meaningful difference was found between the metrics-based strategies. (d) A decrease in the acquired predictive patterns was seen as we
increased the score threshold.

Fig. 10. In the Da Vinci dataset, the runtime of Saraswati-KLSD was meaningfully shorter than the BaseLine runtime. (a) No meaningful difference between the
minimum vertical support values was found. (b) An increase was seen between levels 2 and 3 in the acquired predictive TIRPs and an increase in the running time as
the max levels ahead increased. (c) There was no significant difference between the metrics-based strategies. (d) A decrease was observed in the acquired predictive
TIRPs when increasing the score threshold. The ‘score’ strategy acquired the least in comparison to the metrics-based strategies.

Fig. 11. In the Gesture dataset, the runtime of Sarawati-KLSD was meaningfully shorter than the BaseLine runtime. (a) An increase in the acquired predictive TIRPs
was shown when increasing the minimum vertical support, along with a slight decrease in the Saraswati-KLSD runtime. (b) An increase in the acquired predictive
TIRPs occurred while increasing the max level ahead parameter. (c) There was no significant difference between the metrics-based strategies, and (d) there are no
predictive TIRPs in the score strategy.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

14

main figure has one y-axis, which refers to the classification perfor-
mance (AUC). The error bars in our graphs represent the confidence
interval for 95% for each data point. If the error bars cannot be seen, it
means that they are very small.

In this experiment, we evaluated Saraswati’s parameters for select-
ing predictive patterns in comparison to state-of-the-art filtering feature
selection methods. The results show that the Saraswati method is
significantly better when selecting temporal patterns as features for
classification. For all parameters, the Saraswati selection method ach-
ieved better classification performance, and in most datasets and pa-
rameters, it was significant. This is clear especially in Fig. 26, where the
mean results over all the datasets are shown, Saraswati outperformed
significantly in any parameter. This is very encouraging for two main

reasons. First, it confirms that Saraswati indeed selects predictive TIRPs,
since they are effective for classification. Second, it is encouraging to see
that the TIRPs that were selected were based on the metrics’ criterions,
such as the vertical support differences, the mean horizontal support
comparison, or the mean duration, which are meaningful criterions to
domain experts. This is important because these features are more
explainable, which was a major motivation in our design of this method.

7. Discussion and conclusions

In this study, we introduced the problem of predictive temporal
pattern discovery, in which patterns are mined from two classes of data
simultaneously. Moreover, the discovered predictive temporal pattern

Fig. 12. On average, the runtime of the Sarawati-KLSD was meaningfully shorter than the BaseLine runtime. (a) An increase was shown in the acquired predictive
TIRPs when increasing the minimum vertical support and a decrease in the Saraswati-KLSD runtime. (b) An increase in the acquired TIRPs while increasing the max
level ahead parameter occurred. (c) On average, there was no significant difference between the metrics-based strategies. (d) In most cases, when using score
threshold = 0.7, the results were worse. On average, the score strategy acquired the least predictive TIRPs.

Fig. 13. Results for the Hepatitis dataset: (a) Not much difference was observed in the classification performance when increasing the delta vertical support
threshold. (b) An increase in classification performance was seen when increasing the max levels ahead, and also an increase in the runtime duration. (c) The score
strategy performed worse than the metrics-based strategies, which were quite similar. (d) A small increase in classification performance when the alpha was
increased from 0.01 to 0.05 was found.

Fig. 14. Results for the Epileptic mice dataset: (a) No meaningful difference was found between the delta vertical support thresholds. (b) A small increase in
classification performance occurred as we increased the max levels ahead parameter and an increase in the run-time duration. (c) The score strategy showed the worst
results, and the or strategy had the best performance. (d) The results show a slight increase in classification performance and a decrease in runtime duration as the
alpha value was increased.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

15

selection can be explained by metrics which are more clear and mean-
ingful for humans. For the first time, as far as we know, we introduce the
Saraswati suite which enables transformation of a frequent temporal
pattern discovery algorithm into a predictive temporal pattern discovery
algorithm. Using this suite means adding a new stopping criterion for the
temporal patterns expansion in the process of pattern discovery, which
commonly results in reducing their runtime, depending on the settings.
In this paper, we described the suite in detail, and demonstrated its use
in transforming the KarmaLego algorithm for TIRP discovery into a
predictive pattern algorithm, which we call KLSD. We described KLSD in
detail and presented an experimental plan and the corresponding
results.

To evaluate KLSD, we designed three experiments to answer our
research questions. Although we summarized the results of each
experiment after the figures, we provide here a brief overview and our

conclusions. In Experiment 1, we found that the mean runtime of
Saraswati-KLSD was meaningfully shorter than the BaseLine runtime.
An increase in the acquired predictive TIRPs percentage occurred when
using higher minimum vertical support and increasing the max level
ahead parameter. The mean results of the experiment show that there
was no significant difference between the metrics-based strategies. In
most cases, when using the score strategy, less predictive TIRPs were
acquired. We propose to use a large max level ahead value and not the
score strategy for selection only for ranking the TIRPs as filtering feature
selection.

In Experiment 2, several Saraswati parameters were evaluated and
their influence on the classification performance was observed. The re-
sults show that when increasing the delta vertical support value, there
was a drop in the classification performance, and in most cases when
increasing the max levels ahead, the performance improved, as well as

Fig. 15. Results for the Diabetes dataset: (a) Not much difference was observed in the classification performance and in the runtime when increasing the delta
vertical support threshold. (b) No difference was seen between the max levels ahead values. (c) The score and hs strategies performed slightly better, and (d) there was
an increase in the classification performance and a decrease in runtime as the alpha value increased.

Fig. 16. Results for the ICU dataset: (a) No meaningful difference in classification performance or runtime duration was shown when the delta vertical support
threshold was increased. (b) An increase in the classification performance and in the runtime duration was found as the max level ahead was increased. (c) The score
strategy performed the poorest. (d) An increase in the classification performance occurred as we increased the alpha value.

Fig. 17. Results for the Da Vinci dataset: (a) No meaningful difference in classification performance or running time as the delta vertical support threshold was
increased was observed. (b) A decrease in the classification performance and in runtime duration was found as the max level ahead was increased. (c) The score
strategy performed the best. (d) A decrease in the performance was shown as the alpha value was increased.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

16

when using a higher alpha value.
The goal of Experiment 3 was to compare our Saraswati criteria for

selection of predictive TIRPs against common filtering selection
methods. The results show that the performance of the Saraswati criteria
was superior in all the examined parameters such as the classifier, top N
features, and pattern representation.

We have shown that the Saraswati criteria has a strong ability to
choose predictive patterns, even when compared to statistical feature
selection methods. In addition, we presented KLSD, which demonstrates
the employment of the Saraswati suite on the KarmaLego algorithm for
TIRP discovery. According to our results, the KLSD algorithm was shown
to be faster than the BaseLine process, while acquiring predictive pat-
terns. Moreover, when using the predictive TIRPs as features for

classification, the classifier performed better than when using other
feature selection methods. We conclude that the parameters that most
influenced the runtime and the acquired predictive pattern percentage
are the max level ahead and minimal vertical support.

The limitations of this work are that the method works for binary
classification, although it could be expanded for use with more classes
by employing this method on pairs of classes and constructing from
them patterns that are separable for all the classes. There are quite a few
approaches for extending binary classifiers in the literature (Lingras and
Butz, 2007; Santhanam et al., 2016), which may be suitable. Addition-
ally, in this study, the method was demonstrated only for use in TIRP
mining with the KarmaLego algorithm, and not with other types of
temporal pattern discovery method. However, the principle should work

Fig. 18. Results for the Gesture dataset: (a) No significant difference in the classification performance or running time duration was detected as we increased the
delta vertical support threshold. (b) No meaningful difference were found between the max levels ahead values, while there was an increase in running time duration
when increasing the max levels ahead. (c) The or and hs strategies performed better in the classification. (d) No meaningful difference was observed in the clas-
sification performance or runtime when changing the alpha values.

Fig. 19. In all datasets: (a) There was a decrease in the classification performance and runtime duration when increasing the delta vertical support. (b) A decrease
was shown in the classification performance and an increase in the runtime when increasing the max levels ahead. (c) In general, the score strategy performed better
in classification, and (d) a small increase was seen in the classification performance when increasing the alpha value.

Fig. 20. In the Hepatitis dataset, (a) the Saraswati method performed significantly better than the other feature selection methods. (b) Saraswati performed
significantly better than the other methods for all the classifiers, while the Logistic Regression performed the worst. (c) Saraswati performed significantly better
across all top n features, while being stable, and the other improved with the increase in the number of features. (d) Saraswati performed the best across the different
representation methods.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

17

and, in future work, we intend to adapt the metrics to other temporal
patterns.

We found that max level ahead, the strategy parameter, and the
alpha value for the statistical tests had the largest impact on the clas-
sification performance in general. Although much research has been
done in the field of temporal pattern mining and discovery of predictive
patterns, the research in this field has not been exhausted, and we
suggest several directions in which to extend this work. First, the Sar-
aswati criteria are designed for a binary classification task. Although,
most of the classification tasks in real life are typically binary, we think
that it is worth expanding Saraswati to handle multi-class problems,
although common approaches for multi-classification based on binary
classifiers exist (Lingras and Butz, 2007; Santhanam et al., 2016). While
it is obvious that the patterns discovered by Saraswati are more

explainable (due to differences in the metrics’ values in the classes, such
as the differences in vertical support values of the classes, and the hor-
izontal support and averaged mean duration) and meaningful using the
temporal patterns’ descriptive metrics, such as the horizontal support
and the mean duration, we would like to test it with domain experts. For
example, we can explain that a pattern is predictive since it is more
frequent in one class, or that its mean horizontal support is larger, etc.;
thus, we intend to evaluate their expandability with domain experts. For
that, we would like first to design a user interface that will enable the
enumeration tree of the TIRPs to be browsed, presenting the patterns
and enabling exploration of the tree. While we proposed a score for the
selection of the predictive pattern features, another approach might be
extracting the most predictive pattern features based on a trained clas-
sifier, which can be demonstrated in future work. Along those lines, it

Fig. 21. For the Epileptic mice dataset, (a) overall, the Saraswati method was better than the other methods, (b) with Logistic Regression and Gradient Boosting, and
the Saraswati method was significantly better compared to InfoGAIN and BISERIAL. (c) Saraswati significantly outperformed across all top n features, and (d)
Saraswati significantly outperformed the other methods for all TIRP representations.

Fig. 22. In the Diabetes dataset, (a) the Saraswati method was significantly better than the other methods. (b) With all classifiers, the Saraswati method performed
better than the other methods, but not significantly. (c) Saraswati performed better, but was significant only when using the top 10 features (TIRPs), while it was
stable. (d) Saraswati performed best for all representations, except for the HS.

Fig. 23. In the ICU dataset, (a) the Saraswati method performed significantly better than the other methods. (b) With the Gradient Boosting and Random Forest
classifiers, the Saraswati method performed significantly better, compared to InfoGAIN and BISERIAL. (c) Saraswati performed the best across all top n features, and
with the top 10, it was significant. (d) Saraswati performed better, and the representations were quite similar with some advantage to the NHS.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

18

would be more suitable to use simple classifiers, such as decision trees or
naïve Bayes, and to see, based on their structure, which are the most
predictive patterns.

CRediT authorship contribution statement

Nofar Sarafian Ben Ari: Methodology. Robert Moskovitch:
Methodology, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We would like to express our thanks to Stav Sapir, Maya Schvetz, and
Tal Ivshin for taking part in the BaseLine implementation and sharing
their datasets for this study. The authors also wish to thank Tal Zeevi for
his help and consolation with Python visualization. Finally, we would
like to thank the Israeli Ministry of Science and Technology, who
assisted in funding this project with grants 3-14360 and 3-14428.

Fig. 24. In the Da Vinci dataset, (a) the Saraswati method was significantly better than the other methods. (b) Saraswati performed meaningfully better than the
other methods with the Logistic Regression classifier. (c) Saraswati performed the best across all top n features in a significant way. (d) Saraswati performed better,
and the representations were quite similar with some advantage for MD.

Fig. 25. In the Gesture dataset, (a) overall, the BISERIAL method was slightly better than Saraswati, but not significantly, while they both performed better than the
InfoGain. (b) The BISERIAL performed slightly better than Saraswati in most classifiers except for Gradient Boosting, and none were significant (c) For all n in top
features, the BISERIAL method was slightly better, except for the 10 top features. (d) The BISERIAL performed better, except for the BIN, but always not significantly.

Fig. 26. In the mean results, (a) the Saraswati method was significantly better than the other methods for all datasets. (b) The Saraswati method significantly
outperformed for all classifiers in general. (c) Saraswati performed the best across all top n features, and (d) Saraswati significantly outperformed in all TIRP
presentations.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

Expert Systems With Applications 226 (2023) 119974

19

References

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In
Proc. 20th int. conf. very large data bases. VLDB, 1215, 487–499.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11), 832–843.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential pattern mining using a
bitmap representation. In In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and data Mining (pp. 429–435).

Batal, I., Fradkin, D., Harrison, J., Moerchen, F., and Hauskrecht, M., (2012), Mining
recent temporal patterns for event detection in multivariate time series data, In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 280–288.

Bekkerman, R., El-Yaniv, R., Tishby, N., & Winter, Y. (2003). Distributional word
clustersvs. words for text categorization. Journal of Machine Learning Research, 3
(Mar):11831208, 25.

Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In
Noise reduction in speech processing (pp. 1–4). Springer.

Cheng, H., Yan, X., Han, J., & Hsu, C. (2007). Discriminative frequent patternanalysis for
effective classification. In In 2007 IEEE 23rd International Conference on Data
Engineering (pp. 716–725).

Dhillon, I. S., Mallela, S., Kumar, R., (2003) A divisive information-theoreticfeature
clustering algorithm for text classification. Journal of Machine Learning Research, 3
(Mar):1265–1287.

Dvir, O., Wolfson, P., Lovat, L., & Moskovitch, R. (2020). Falls Prediction in Care Homes
Using Mobile App Data Collection. Minneapolis, USA: Artificial Intelligence in
Medicine.

Dua, D., & Graff, C. (2019). UCI Machine Learning Repository (http://archive.ics.uci.edu/
ml). Irvine, CA: University of California, School of Information and Computer
Science.

Fradkin, D., & Mörchen, F. (2015). Mining sequential patterns for classification.
Knowledge and Information Systems, 45(3), 731–749.

Gao, Y., Vedula, S. S., Reiley, C. E., Ahmidi, N., Varadarajan, B., Lin, H. C., Tao, L.,
Zappella, L., Bejar, B., Yuh, D. D., Chen, C., Vidal, R., Khudanpur, S., Hager, G. D.,
(2014) Jhu-isi gesture and skill assessment working set (jigsaws): a surgical activity
dataset for human motion modeling. MICCAI Workshop: M2CAI. Vol. 3.

Han, J., Pei, J., & Yin, Y. (2000). (2000) Mining frequent patterns without candidate
generation. In ACM SIGMOD Record, 29, 1–12.

Harel, O., & Moskovitch, R. (2021). Complete Closed Time Intervals-Related Patterns
Mining, The 35th AAAI Conference on Artificial Intelligence (AAAI 2021). Canada:
Vancouver.

Höppner. F., (2001) Learning temporal rules from state sequences. In IJCAI Workshop on
Learning from Temporal and Spatial Data, volume 25.

Itzhak, N., Nagori, A., Lior, E., Schvetz, M., Lodha, R., Sethi, T., et al. (2000). Acute
Hypertensive Episodes Prediction. Minneapolis, USA: Artificial Intelligence in
Medicine.

Kent, J. T. (1983). Information gain and a general measure of correlation. Biometrika, 70
(1), 163–173.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97(1), 273–324.

Lesh, N., Zaki, M. J., & Oglhara, M. (2000). Scalable feature mining for sequential data.
IEEE Intelligent Systems and Their Applications, 15(2), 48–56.

Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing sax: A novel symbolic
representation of time series. Data Mining and Knowledge Discovery, 15(2), 107–144.

Lingras, P., & Butz, C. (2007). Rough set based 1-v-1 and 1-vr approaches to support
vector machine multi-classification. Information Sciences, 177(18), 3782–3798.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining.
In Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining.

Mörchen, F., Ultsch, A., (2005) Optimizing time series discretization for knowledge
discovery. In Proceedings of the eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, pages 660–665.

Mörchen, F., Ultsch. A., (2005) Optimizing time series discretization for knowledge
discovery. Proceedings of the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining.

Moskovitch, R., & Shahar, Y. (2015a). Classification of multivariate time series via
temporal abstraction and time intervals mining. Knowledge and Information Systems,
45(1), 35–74.

Moskovitch, R., & Shahar, Y. (2015b). Classification-driven temporal discretization of
multivariate time series. Data Mining and Knowledge Discovery, 29(4), 871–913.

Moskovitch, R. (2022). Multivariate Time Series Mining, Wiley’s Data Mining and
Knowledge Discovery.

Moskovitch, R., Wang, F., Walsh, C., Hripcsak, G., & Tatonetti, N. (2015). Prediction of
Outcome Events via Time Intervals Mining, IEEE International Conference on Data Mining
(ICDM). USA: Atlantic City.

Moskovitch, R., Choi, H., Hripcsak, G., & Tatonetti, N. (2016). Prognosis of clinical
outcomes with temporal patterns and experiences with one class feature selection.
IEEE/ACM Transactions on Computational Biology and. Bioinformatics.

Novitski, P., Cohen, C., M., Karasik, A., Shalev, V., Hodik, G., Moskovitch, R., (2022) All
Cause Mortality Prediction in T2D Patients with iTirps, Artificial Intelligence in
Medicine.

Papapetrou, P., Kollios, G., Sclaroff, S., & Gunopulos, D. (2009). Mining frequent
arrangements of temporal intervals. Knowledge and Information Systems, 21(2), 133.

Patel, D., Hsu, W., Lee, M., L., (2008) Mining relationships among interval-based events
for classification. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 393–404.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., et al. (2004). Mining
sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions
on Knowledge and Data Engineering, 16(11), 1424–1440.

Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V.,
Alonso-Betanzos, A., et al. (2016). Data discretization: Taxonomy and big data
challenge, Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 6(1),
5–21.

Santhanam, V., Morariu, V. I., Harwood, D., & Davis, L. S. (2016). A non-parametric
approach to extending generic binary classifiers for multi-classification. Pattern
Recognition, 58, 149–158.

Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial
Intelligence, 90(1–2), 79–133.

Shknevsky, A., Shahar, Y., & Moskovitch, R. (2017). Consistent discovery of frequent
interval-based temporal patterns in chronic patients’ data. Journal of Biomedical
Informatics, 75, 83–95.

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and
performance improvements. In Apers, P., Bouzeghoub, M., Gardarin, G. (eds.),
Advances in Database Technology — EDBT ’96. EDBT 1996. Lecture Notes in
Computer Science, vol. 1057. Springer, Berlin, Heidelberg.

Torkkola, K. (2003). Feature extraction by non-parametric mutual information
maximization. Journal of Machine Learning Research, 3(Mar):1415–1438.

Tseng, V. S., & Lee, C. (2009). Effective temporal data classification by integrating
sequential pattern mining and probabilistic induction. Expert Systems with
Applications, 36(5), 9524–9532.

Welch, B. L. (1947). The generalization of student’s’ problem when several different
population variances are involved. Biometrika, 34(1/2), 28–35.

Weston, J., Elisseeff, A., Schölkopf, B., & Tipping, M. (2003). Use of the zero-norm with
linear models and kernel methods. Journal of Machine Learning Research, 3(Mar):
1439–1461.

Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1–2), 31–60.

Zhou, C., Cule, B., & Goethals, B. (2016). Pattern based sequence classification. IEEE
Transactions on Knowledge and Data Engineering, 28(5), 1285–1298.

N. Sarafian Ben Ari and R. Moskovitch

Isr
ael

-U
S BIR

D Fou
nd

ati
on

http://refhub.elsevier.com/S0957-4174(23)00476-1/h0005
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0005
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0010
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0010
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0020
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0020
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0020
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0035
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0035
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0035
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0040
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0040
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0050
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0050
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0050
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0060
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0060
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0060
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0065
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0065
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0065
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0070
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0070
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0075
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0075
http://refhub.elsevier.com/S0957-4174(23)00476-1/h9000
http://refhub.elsevier.com/S0957-4174(23)00476-1/h9000
http://refhub.elsevier.com/S0957-4174(23)00476-1/h9000
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0100
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0100
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0100
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0110
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0110
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0115
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0115
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0130
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0130
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0140
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0140
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0145
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0145
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0150
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0150
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0150
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0190
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0190
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0190
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0195
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0195
http://refhub.elsevier.com/S0957-4174(23)00476-1/h9005
http://refhub.elsevier.com/S0957-4174(23)00476-1/h9005
http://refhub.elsevier.com/S0957-4174(23)00476-1/h9005
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0200
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0200
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0200
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0215
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0215
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0225
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0225
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0225
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0230
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0230
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0230
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0230
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0235
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0235
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0235
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0240
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0240
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0245
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0245
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0245
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0250
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0250
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0255
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0255
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0255
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0265
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0265
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0270
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0270
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0270
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0285
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0285
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0290
http://refhub.elsevier.com/S0957-4174(23)00476-1/h0290

	Predictive temporal patterns discovery
	1 Introduction
	1.1 The predictive temporal patterns discovery challenge

	2 Background
	2.1 Patterns-Based classification
	2.2 Filtering feature selection
	2.3 Symbolic time intervals
	2.4 Time intervals mining
	2.4.1 The KarmaLego algorithm

	2.5 Time intervals Related Patterns-Based classification

	3 Methods
	3.1 The Saraswati suite
	3.1.1 Definitions
	3.1.2 Saraswati selection strategies
	3.1.2.1 The Saraswati predictability score and algorithm

	3.1.3 Saraswati-Based KarmaLego
	3.1.3.1 Look ahead

	4 Evaluation
	5 Research questions
	5.1 Experimental plan
	5.1.1 Experiment 1 – Runtime vs. Acquired predictive TIRPs discovery
	5.1.1.1 Saraswati versus BaseLine evaluation

	5.1.2 Experiment 2 – KLSD best settings for classification
	5.1.3 Experiment 3 – Feature selection methods comparison

	5.2 Datasets

	6 Results
	6.1 Experiment 1 – Runtime vs. Acquired predictive TIRP discovery
	6.2 Experiment 2 – KLSD best settings for classification
	6.3 Experiment 3 – Feature selection methods comparison

	7 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

